Metamath Proof Explorer


Theorem climmptf

Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climmptf.k _ k F
climmptf.m φ M
climmptf.f φ F V
climmptf.z Z = M
climmptf.g G = k Z F k
Assertion climmptf φ F A G A

Proof

Step Hyp Ref Expression
1 climmptf.k _ k F
2 climmptf.m φ M
3 climmptf.f φ F V
4 climmptf.z Z = M
5 climmptf.g G = k Z F k
6 nfcv _ j F k
7 nfcv _ k j
8 1 7 nffv _ k F j
9 fveq2 k = j F k = F j
10 6 8 9 cbvmpt k Z F k = j Z F j
11 5 10 eqtri G = j Z F j
12 4 11 climmpt M F V F A G A
13 2 3 12 syl2anc φ F A G A