Metamath Proof Explorer


Theorem climmulc2

Description: Limit of a sequence multiplied by a constant C . Corollary 12-2.2 of Gleason p. 171. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses climadd.1 Z = M
climadd.2 φ M
climadd.4 φ F A
climaddc1.5 φ C
climaddc1.6 φ G W
climaddc1.7 φ k Z F k
climmulc2.h φ k Z G k = C F k
Assertion climmulc2 φ G C A

Proof

Step Hyp Ref Expression
1 climadd.1 Z = M
2 climadd.2 φ M
3 climadd.4 φ F A
4 climaddc1.5 φ C
5 climaddc1.6 φ G W
6 climaddc1.7 φ k Z F k
7 climmulc2.h φ k Z G k = C F k
8 0z 0
9 uzssz 0
10 zex V
11 9 10 climconst2 C 0 × C C
12 4 8 11 sylancl φ × C C
13 eluzelz k M k
14 13 1 eleq2s k Z k
15 fvconst2g C k × C k = C
16 4 14 15 syl2an φ k Z × C k = C
17 4 adantr φ k Z C
18 16 17 eqeltrd φ k Z × C k
19 16 oveq1d φ k Z × C k F k = C F k
20 7 19 eqtr4d φ k Z G k = × C k F k
21 1 2 12 5 3 18 6 20 climmul φ G C A