Description: A version of climmul using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climmulf.1 | |
|
| climmulf.2 | |
||
| climmulf.3 | |
||
| climmulf.4 | |
||
| climmulf.5 | |
||
| climmulf.6 | |
||
| climmulf.7 | |
||
| climmulf.8 | |
||
| climmulf.9 | |
||
| climmulf.10 | |
||
| climmulf.11 | |
||
| climmulf.12 | |
||
| Assertion | climmulf | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmulf.1 | |
|
| 2 | climmulf.2 | |
|
| 3 | climmulf.3 | |
|
| 4 | climmulf.4 | |
|
| 5 | climmulf.5 | |
|
| 6 | climmulf.6 | |
|
| 7 | climmulf.7 | |
|
| 8 | climmulf.8 | |
|
| 9 | climmulf.9 | |
|
| 10 | climmulf.10 | |
|
| 11 | climmulf.11 | |
|
| 12 | climmulf.12 | |
|
| 13 | nfcv | |
|
| 14 | 13 | nfel1 | |
| 15 | 1 14 | nfan | |
| 16 | 2 13 | nffv | |
| 17 | 16 | nfel1 | |
| 18 | 15 17 | nfim | |
| 19 | eleq1w | |
|
| 20 | 19 | anbi2d | |
| 21 | fveq2 | |
|
| 22 | 21 | eleq1d | |
| 23 | 20 22 | imbi12d | |
| 24 | 18 23 10 | chvarfv | |
| 25 | 3 13 | nffv | |
| 26 | 25 | nfel1 | |
| 27 | 15 26 | nfim | |
| 28 | fveq2 | |
|
| 29 | 28 | eleq1d | |
| 30 | 20 29 | imbi12d | |
| 31 | 27 30 11 | chvarfv | |
| 32 | 4 13 | nffv | |
| 33 | nfcv | |
|
| 34 | 16 33 25 | nfov | |
| 35 | 32 34 | nfeq | |
| 36 | 15 35 | nfim | |
| 37 | fveq2 | |
|
| 38 | 21 28 | oveq12d | |
| 39 | 37 38 | eqeq12d | |
| 40 | 20 39 | imbi12d | |
| 41 | 36 40 12 | chvarfv | |
| 42 | 5 6 7 8 9 24 31 41 | climmul | |