Metamath Proof Explorer


Theorem climmulf

Description: A version of climmul using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climmulf.1 k φ
climmulf.2 _ k F
climmulf.3 _ k G
climmulf.4 _ k H
climmulf.5 Z = M
climmulf.6 φ M
climmulf.7 φ F A
climmulf.8 φ H X
climmulf.9 φ G B
climmulf.10 φ k Z F k
climmulf.11 φ k Z G k
climmulf.12 φ k Z H k = F k G k
Assertion climmulf φ H A B

Proof

Step Hyp Ref Expression
1 climmulf.1 k φ
2 climmulf.2 _ k F
3 climmulf.3 _ k G
4 climmulf.4 _ k H
5 climmulf.5 Z = M
6 climmulf.6 φ M
7 climmulf.7 φ F A
8 climmulf.8 φ H X
9 climmulf.9 φ G B
10 climmulf.10 φ k Z F k
11 climmulf.11 φ k Z G k
12 climmulf.12 φ k Z H k = F k G k
13 nfcv _ k j
14 13 nfel1 k j Z
15 1 14 nfan k φ j Z
16 2 13 nffv _ k F j
17 16 nfel1 k F j
18 15 17 nfim k φ j Z F j
19 eleq1w k = j k Z j Z
20 19 anbi2d k = j φ k Z φ j Z
21 fveq2 k = j F k = F j
22 21 eleq1d k = j F k F j
23 20 22 imbi12d k = j φ k Z F k φ j Z F j
24 18 23 10 chvarfv φ j Z F j
25 3 13 nffv _ k G j
26 25 nfel1 k G j
27 15 26 nfim k φ j Z G j
28 fveq2 k = j G k = G j
29 28 eleq1d k = j G k G j
30 20 29 imbi12d k = j φ k Z G k φ j Z G j
31 27 30 11 chvarfv φ j Z G j
32 4 13 nffv _ k H j
33 nfcv _ k ×
34 16 33 25 nfov _ k F j G j
35 32 34 nfeq k H j = F j G j
36 15 35 nfim k φ j Z H j = F j G j
37 fveq2 k = j H k = H j
38 21 28 oveq12d k = j F k G k = F j G j
39 37 38 eqeq12d k = j H k = F k G k H j = F j G j
40 20 39 imbi12d k = j φ k Z H k = F k G k φ j Z H j = F j G j
41 36 40 12 chvarfv φ j Z H j = F j G j
42 5 6 7 8 9 24 31 41 climmul φ H A B