Metamath Proof Explorer


Theorem climneg

Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climneg.1 k φ
climneg.2 _ k F
climneg.3 Z = M
climneg.4 φ M
climneg.5 φ F A
climneg.6 φ k Z F k
Assertion climneg φ k Z F k A

Proof

Step Hyp Ref Expression
1 climneg.1 k φ
2 climneg.2 _ k F
3 climneg.3 Z = M
4 climneg.4 φ M
5 climneg.5 φ F A
6 climneg.6 φ k Z F k
7 nfmpt1 _ k k Z 1
8 nfmpt1 _ k k Z F k
9 3 fvexi Z V
10 9 mptex k Z 1 V
11 10 a1i φ k Z 1 V
12 1cnd φ 1
13 12 negcld φ 1
14 eqidd j Z k Z 1 = k Z 1
15 eqidd j Z k = j 1 = 1
16 id j Z j Z
17 1cnd j Z 1
18 17 negcld j Z 1
19 14 15 16 18 fvmptd j Z k Z 1 j = 1
20 19 adantl φ j Z k Z 1 j = 1
21 3 4 11 13 20 climconst φ k Z 1 -1
22 9 mptex k Z F k V
23 22 a1i φ k Z F k V
24 neg1cn 1
25 eqid k Z 1 = k Z 1
26 25 fvmpt2 k Z 1 k Z 1 k = 1
27 24 26 mpan2 k Z k Z 1 k = 1
28 27 24 eqeltrdi k Z k Z 1 k
29 28 adantl φ k Z k Z 1 k
30 simpr φ k Z k Z
31 6 negcld φ k Z F k
32 eqid k Z F k = k Z F k
33 32 fvmpt2 k Z F k k Z F k k = F k
34 30 31 33 syl2anc φ k Z k Z F k k = F k
35 6 mulm1d φ k Z -1 F k = F k
36 27 eqcomd k Z 1 = k Z 1 k
37 36 adantl φ k Z 1 = k Z 1 k
38 37 oveq1d φ k Z -1 F k = k Z 1 k F k
39 34 35 38 3eqtr2d φ k Z k Z F k k = k Z 1 k F k
40 1 7 2 8 3 4 21 23 5 29 6 39 climmulf φ k Z F k -1 A
41 climcl F A A
42 5 41 syl φ A
43 42 mulm1d φ -1 A = A
44 40 43 breqtrd φ k Z F k A