Metamath Proof Explorer


Theorem climneg

Description: Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climneg.1 kφ
climneg.2 _kF
climneg.3 Z=M
climneg.4 φM
climneg.5 φFA
climneg.6 φkZFk
Assertion climneg φkZFkA

Proof

Step Hyp Ref Expression
1 climneg.1 kφ
2 climneg.2 _kF
3 climneg.3 Z=M
4 climneg.4 φM
5 climneg.5 φFA
6 climneg.6 φkZFk
7 nfmpt1 _kkZ1
8 nfmpt1 _kkZFk
9 3 fvexi ZV
10 9 mptex kZ1V
11 10 a1i φkZ1V
12 1cnd φ1
13 12 negcld φ1
14 eqidd jZkZ1=kZ1
15 eqidd jZk=j1=1
16 id jZjZ
17 1cnd jZ1
18 17 negcld jZ1
19 14 15 16 18 fvmptd jZkZ1j=1
20 19 adantl φjZkZ1j=1
21 3 4 11 13 20 climconst φkZ1-1
22 9 mptex kZFkV
23 22 a1i φkZFkV
24 neg1cn 1
25 eqid kZ1=kZ1
26 25 fvmpt2 kZ1kZ1k=1
27 24 26 mpan2 kZkZ1k=1
28 27 24 eqeltrdi kZkZ1k
29 28 adantl φkZkZ1k
30 simpr φkZkZ
31 6 negcld φkZFk
32 eqid kZFk=kZFk
33 32 fvmpt2 kZFkkZFkk=Fk
34 30 31 33 syl2anc φkZkZFkk=Fk
35 6 mulm1d φkZ-1Fk=Fk
36 27 eqcomd kZ1=kZ1k
37 36 adantl φkZ1=kZ1k
38 37 oveq1d φkZ-1Fk=kZ1kFk
39 34 35 38 3eqtr2d φkZkZFkk=kZ1kFk
40 1 7 2 8 3 4 21 23 5 29 6 39 climmulf φkZFk-1A
41 climcl FAA
42 5 41 syl φA
43 42 mulm1d φ-1A=A
44 40 43 breqtrd φkZFkA