Step |
Hyp |
Ref |
Expression |
1 |
|
climrec.1 |
|
2 |
|
climrec.2 |
|
3 |
|
climrec.3 |
|
4 |
|
climrec.4 |
|
5 |
|
climrec.5 |
|
6 |
|
climrec.6 |
|
7 |
|
climrec.7 |
|
8 |
|
climcl |
|
9 |
3 8
|
syl |
|
10 |
4
|
neneqd |
|
11 |
|
c0ex |
|
12 |
11
|
elsn2 |
|
13 |
10 12
|
sylnibr |
|
14 |
9 13
|
eldifd |
|
15 |
|
eqidd |
|
16 |
|
simpr |
|
17 |
16
|
oveq2d |
|
18 |
|
simpr |
|
19 |
18
|
eldifad |
|
20 |
|
eldifsni |
|
21 |
20
|
adantl |
|
22 |
19 21
|
reccld |
|
23 |
15 17 18 22
|
fvmptd |
|
24 |
23 22
|
eqeltrd |
|
25 |
|
eqid |
|
26 |
25
|
reccn2 |
|
27 |
14 26
|
sylan |
|
28 |
|
eqidd |
|
29 |
|
simpr |
|
30 |
29
|
oveq2d |
|
31 |
|
id |
|
32 |
|
eldifi |
|
33 |
32 20
|
reccld |
|
34 |
28 30 31 33
|
fvmptd |
|
35 |
34
|
ad2antlr |
|
36 |
|
eqidd |
|
37 |
|
simpr |
|
38 |
37
|
oveq2d |
|
39 |
9 4
|
reccld |
|
40 |
36 38 14 39
|
fvmptd |
|
41 |
40
|
ad4antr |
|
42 |
35 41
|
oveq12d |
|
43 |
42
|
fveq2d |
|
44 |
31
|
ad2antlr |
|
45 |
|
simpr |
|
46 |
|
simpllr |
|
47 |
44 45 46
|
mp2d |
|
48 |
43 47
|
eqbrtrd |
|
49 |
48
|
exp41 |
|
50 |
49
|
ralimdv2 |
|
51 |
50
|
reximdv |
|
52 |
27 51
|
mpd |
|
53 |
|
eqidd |
|
54 |
|
oveq2 |
|
55 |
54
|
adantl |
|
56 |
5
|
eldifad |
|
57 |
|
eldifsni |
|
58 |
5 57
|
syl |
|
59 |
56 58
|
reccld |
|
60 |
53 55 5 59
|
fvmptd |
|
61 |
6 60
|
eqtr4d |
|
62 |
1 2 14 24 3 7 52 5 61
|
climcn1 |
|
63 |
62 40
|
breqtrd |
|