Metamath Proof Explorer


Theorem climreclf

Description: The limit of a convergent real sequence is real. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climreclf.k k φ
climreclf.f _ k F
climreclf.z Z = M
climreclf.m φ M
climreclf.a φ F A
climreclf.r φ k Z F k
Assertion climreclf φ A

Proof

Step Hyp Ref Expression
1 climreclf.k k φ
2 climreclf.f _ k F
3 climreclf.z Z = M
4 climreclf.m φ M
5 climreclf.a φ F A
6 climreclf.r φ k Z F k
7 nfv k j Z
8 1 7 nfan k φ j Z
9 nfcv _ k j
10 2 9 nffv _ k F j
11 nfcv _ k
12 10 11 nfel k F j
13 8 12 nfim k φ j Z F j
14 eleq1w k = j k Z j Z
15 14 anbi2d k = j φ k Z φ j Z
16 fveq2 k = j F k = F j
17 16 eleq1d k = j F k F j
18 15 17 imbi12d k = j φ k Z F k φ j Z F j
19 13 18 6 chvarfv φ j Z F j
20 3 4 5 19 climrecl φ A