Metamath Proof Explorer


Theorem climres

Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion climres M F V F M A F A

Proof

Step Hyp Ref Expression
1 eqid M = M
2 resexg F V F M V
3 2 adantl M F V F M V
4 simpr M F V F V
5 simpl M F V M
6 fvres k M F M k = F k
7 6 adantl M F V k M F M k = F k
8 1 3 4 5 7 climeq M F V F M A F A