Step |
Hyp |
Ref |
Expression |
1 |
|
climrlim2.1 |
|
2 |
|
climrlim2.2 |
|
3 |
|
climrlim2.3 |
|
4 |
|
climrlim2.4 |
|
5 |
|
climrlim2.5 |
|
6 |
|
climrlim2.6 |
|
7 |
|
climrlim2.7 |
|
8 |
|
eluzelz |
|
9 |
8 1
|
eleq2s |
|
10 |
9
|
ad2antlr |
|
11 |
3
|
sselda |
|
12 |
11
|
flcld |
|
13 |
12
|
adantlr |
|
14 |
13
|
ad2ant2r |
|
15 |
|
simprr |
|
16 |
11
|
adantlr |
|
17 |
16
|
ad2ant2r |
|
18 |
|
flge |
|
19 |
17 10 18
|
syl2anc |
|
20 |
15 19
|
mpbid |
|
21 |
|
eluz2 |
|
22 |
10 14 20 21
|
syl3anbrc |
|
23 |
|
simpr |
|
24 |
23
|
ralimi |
|
25 |
|
fveq2 |
|
26 |
25
|
fvoveq1d |
|
27 |
26
|
breq1d |
|
28 |
27
|
rspcv |
|
29 |
22 24 28
|
syl2im |
|
30 |
|
eqid |
|
31 |
4
|
adantr |
|
32 |
|
flge |
|
33 |
11 31 32
|
syl2anc |
|
34 |
7 33
|
mpbid |
|
35 |
|
eluz2 |
|
36 |
31 12 34 35
|
syl3anbrc |
|
37 |
36 1
|
eleqtrrdi |
|
38 |
2
|
eleq1d |
|
39 |
6
|
ralrimiva |
|
40 |
39
|
adantr |
|
41 |
38 40 37
|
rspcdva |
|
42 |
30 2 37 41
|
fvmptd3 |
|
43 |
42
|
adantlr |
|
44 |
43
|
ad2ant2r |
|
45 |
44
|
fvoveq1d |
|
46 |
45
|
breq1d |
|
47 |
29 46
|
sylibd |
|
48 |
47
|
expr |
|
49 |
48
|
com23 |
|
50 |
49
|
ralrimdva |
|
51 |
|
eluzelre |
|
52 |
51 1
|
eleq2s |
|
53 |
52
|
adantl |
|
54 |
50 53
|
jctild |
|
55 |
54
|
expimpd |
|
56 |
55
|
reximdv2 |
|
57 |
56
|
ralimdva |
|
58 |
57
|
adantld |
|
59 |
|
climrel |
|
60 |
59
|
brrelex1i |
|
61 |
5 60
|
syl |
|
62 |
|
eqidd |
|
63 |
1 4 61 62
|
clim2 |
|
64 |
41
|
ralrimiva |
|
65 |
|
climcl |
|
66 |
5 65
|
syl |
|
67 |
64 3 66
|
rlim2 |
|
68 |
58 63 67
|
3imtr4d |
|
69 |
5 68
|
mpd |
|