| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climrlim2.1 |
|
| 2 |
|
climrlim2.2 |
|
| 3 |
|
climrlim2.3 |
|
| 4 |
|
climrlim2.4 |
|
| 5 |
|
climrlim2.5 |
|
| 6 |
|
climrlim2.6 |
|
| 7 |
|
climrlim2.7 |
|
| 8 |
|
eluzelz |
|
| 9 |
8 1
|
eleq2s |
|
| 10 |
9
|
ad2antlr |
|
| 11 |
3
|
sselda |
|
| 12 |
11
|
flcld |
|
| 13 |
12
|
adantlr |
|
| 14 |
13
|
ad2ant2r |
|
| 15 |
|
simprr |
|
| 16 |
11
|
adantlr |
|
| 17 |
16
|
ad2ant2r |
|
| 18 |
|
flge |
|
| 19 |
17 10 18
|
syl2anc |
|
| 20 |
15 19
|
mpbid |
|
| 21 |
|
eluz2 |
|
| 22 |
10 14 20 21
|
syl3anbrc |
|
| 23 |
|
simpr |
|
| 24 |
23
|
ralimi |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
fvoveq1d |
|
| 27 |
26
|
breq1d |
|
| 28 |
27
|
rspcv |
|
| 29 |
22 24 28
|
syl2im |
|
| 30 |
|
eqid |
|
| 31 |
4
|
adantr |
|
| 32 |
|
flge |
|
| 33 |
11 31 32
|
syl2anc |
|
| 34 |
7 33
|
mpbid |
|
| 35 |
|
eluz2 |
|
| 36 |
31 12 34 35
|
syl3anbrc |
|
| 37 |
36 1
|
eleqtrrdi |
|
| 38 |
2
|
eleq1d |
|
| 39 |
6
|
ralrimiva |
|
| 40 |
39
|
adantr |
|
| 41 |
38 40 37
|
rspcdva |
|
| 42 |
30 2 37 41
|
fvmptd3 |
|
| 43 |
42
|
adantlr |
|
| 44 |
43
|
ad2ant2r |
|
| 45 |
44
|
fvoveq1d |
|
| 46 |
45
|
breq1d |
|
| 47 |
29 46
|
sylibd |
|
| 48 |
47
|
expr |
|
| 49 |
48
|
com23 |
|
| 50 |
49
|
ralrimdva |
|
| 51 |
|
eluzelre |
|
| 52 |
51 1
|
eleq2s |
|
| 53 |
52
|
adantl |
|
| 54 |
50 53
|
jctild |
|
| 55 |
54
|
expimpd |
|
| 56 |
55
|
reximdv2 |
|
| 57 |
56
|
ralimdva |
|
| 58 |
57
|
adantld |
|
| 59 |
|
climrel |
|
| 60 |
59
|
brrelex1i |
|
| 61 |
5 60
|
syl |
|
| 62 |
|
eqidd |
|
| 63 |
1 4 61 62
|
clim2 |
|
| 64 |
41
|
ralrimiva |
|
| 65 |
|
climcl |
|
| 66 |
5 65
|
syl |
|
| 67 |
64 3 66
|
rlim2 |
|
| 68 |
58 63 67
|
3imtr4d |
|
| 69 |
5 68
|
mpd |
|