Metamath Proof Explorer


Theorem climserle

Description: The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005) (Revised by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
climserle.2 φ N Z
climserle.3 φ seq M + F A
climserle.4 φ k Z F k
climserle.5 φ k Z 0 F k
Assertion climserle φ seq M + F N A

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 climserle.2 φ N Z
3 climserle.3 φ seq M + F A
4 climserle.4 φ k Z F k
5 climserle.5 φ k Z 0 F k
6 2 1 eleqtrdi φ N M
7 eluzel2 N M M
8 6 7 syl φ M
9 1 8 4 serfre φ seq M + F : Z
10 9 ffvelrnda φ j Z seq M + F j
11 1 peano2uzs j Z j + 1 Z
12 fveq2 k = j + 1 F k = F j + 1
13 12 breq2d k = j + 1 0 F k 0 F j + 1
14 13 imbi2d k = j + 1 φ 0 F k φ 0 F j + 1
15 5 expcom k Z φ 0 F k
16 14 15 vtoclga j + 1 Z φ 0 F j + 1
17 16 impcom φ j + 1 Z 0 F j + 1
18 11 17 sylan2 φ j Z 0 F j + 1
19 12 eleq1d k = j + 1 F k F j + 1
20 19 imbi2d k = j + 1 φ F k φ F j + 1
21 4 expcom k Z φ F k
22 20 21 vtoclga j + 1 Z φ F j + 1
23 22 impcom φ j + 1 Z F j + 1
24 11 23 sylan2 φ j Z F j + 1
25 10 24 addge01d φ j Z 0 F j + 1 seq M + F j seq M + F j + F j + 1
26 18 25 mpbid φ j Z seq M + F j seq M + F j + F j + 1
27 simpr φ j Z j Z
28 27 1 eleqtrdi φ j Z j M
29 seqp1 j M seq M + F j + 1 = seq M + F j + F j + 1
30 28 29 syl φ j Z seq M + F j + 1 = seq M + F j + F j + 1
31 26 30 breqtrrd φ j Z seq M + F j seq M + F j + 1
32 1 2 3 10 31 climub φ seq M + F N A