Metamath Proof Explorer


Theorem climshft

Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion climshft M F V F shift M A F A

Proof

Step Hyp Ref Expression
1 oveq1 f = F f shift M = F shift M
2 1 breq1d f = F f shift M A F shift M A
3 breq1 f = F f A F A
4 2 3 bibi12d f = F f shift M A f A F shift M A F A
5 4 imbi2d f = F M f shift M A f A M F shift M A F A
6 znegcl M M
7 ovex f shift M V
8 7 climshftlem M f shift M A f shift M shift -M A
9 6 8 syl M f shift M A f shift M shift -M A
10 eqid M = M
11 ovexd M f shift M shift -M V
12 vex f V
13 12 a1i M f V
14 id M M
15 zcn M M
16 eluzelcn k M k
17 12 shftcan1 M k f shift M shift -M k = f k
18 15 16 17 syl2an M k M f shift M shift -M k = f k
19 10 11 13 14 18 climeq M f shift M shift -M A f A
20 9 19 sylibd M f shift M A f A
21 12 climshftlem M f A f shift M A
22 20 21 impbid M f shift M A f A
23 5 22 vtoclg F V M F shift M A F A
24 23 impcom M F V F shift M A F A