Metamath Proof Explorer


Theorem climshft2

Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007) (Revised by Mario Carneiro, 6-Feb-2014)

Ref Expression
Hypotheses climshft2.1 Z = M
climshft2.2 φ M
climshft2.3 φ K
climshft2.5 φ F W
climshft2.6 φ G X
climshft2.7 φ k Z G k + K = F k
Assertion climshft2 φ F A G A

Proof

Step Hyp Ref Expression
1 climshft2.1 Z = M
2 climshft2.2 φ M
3 climshft2.3 φ K
4 climshft2.5 φ F W
5 climshft2.6 φ G X
6 climshft2.7 φ k Z G k + K = F k
7 ovexd φ G shift K V
8 3 zcnd φ K
9 eluzelz k M k
10 9 1 eleq2s k Z k
11 10 zcnd k Z k
12 fvex I G V
13 12 shftval4 K k I G shift K k = I G K + k
14 8 11 13 syl2an φ k Z I G shift K k = I G K + k
15 fvi G X I G = G
16 5 15 syl φ I G = G
17 16 adantr φ k Z I G = G
18 17 oveq1d φ k Z I G shift K = G shift K
19 18 fveq1d φ k Z I G shift K k = G shift K k
20 addcom K k K + k = k + K
21 8 11 20 syl2an φ k Z K + k = k + K
22 17 21 fveq12d φ k Z I G K + k = G k + K
23 14 19 22 3eqtr3d φ k Z G shift K k = G k + K
24 23 6 eqtrd φ k Z G shift K k = F k
25 1 7 4 2 24 climeq φ G shift K A F A
26 3 znegcld φ K
27 climshft K G X G shift K A G A
28 26 5 27 syl2anc φ G shift K A G A
29 25 28 bitr3d φ F A G A