Metamath Proof Explorer


Theorem climshftlem

Description: A shifted function converges if the original function converges. (Contributed by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis climshft.1 F V
Assertion climshftlem M F A F shift M A

Proof

Step Hyp Ref Expression
1 climshft.1 F V
2 zaddcl k M k + M
3 2 ancoms M k k + M
4 eluzsub k M n k + M n M k
5 4 3com12 M k n k + M n M k
6 5 3expa M k n k + M n M k
7 fveq2 m = n M F m = F n M
8 7 eleq1d m = n M F m F n M
9 7 fvoveq1d m = n M F m A = F n M A
10 9 breq1d m = n M F m A < x F n M A < x
11 8 10 anbi12d m = n M F m F m A < x F n M F n M A < x
12 11 rspcv n M k m k F m F m A < x F n M F n M A < x
13 6 12 syl M k n k + M m k F m F m A < x F n M F n M A < x
14 zcn M M
15 eluzelcn n k + M n
16 1 shftval M n F shift M n = F n M
17 16 eleq1d M n F shift M n F n M
18 16 fvoveq1d M n F shift M n A = F n M A
19 18 breq1d M n F shift M n A < x F n M A < x
20 17 19 anbi12d M n F shift M n F shift M n A < x F n M F n M A < x
21 14 15 20 syl2an M n k + M F shift M n F shift M n A < x F n M F n M A < x
22 21 adantlr M k n k + M F shift M n F shift M n A < x F n M F n M A < x
23 13 22 sylibrd M k n k + M m k F m F m A < x F shift M n F shift M n A < x
24 23 ralrimdva M k m k F m F m A < x n k + M F shift M n F shift M n A < x
25 fveq2 m = k + M m = k + M
26 25 raleqdv m = k + M n m F shift M n F shift M n A < x n k + M F shift M n F shift M n A < x
27 26 rspcev k + M n k + M F shift M n F shift M n A < x m n m F shift M n F shift M n A < x
28 3 24 27 syl6an M k m k F m F m A < x m n m F shift M n F shift M n A < x
29 28 rexlimdva M k m k F m F m A < x m n m F shift M n F shift M n A < x
30 29 ralimdv M x + k m k F m F m A < x x + m n m F shift M n F shift M n A < x
31 30 anim2d M A x + k m k F m F m A < x A x + m n m F shift M n F shift M n A < x
32 1 a1i M F V
33 eqidd M m F m = F m
34 32 33 clim M F A A x + k m k F m F m A < x
35 ovexd M F shift M V
36 eqidd M n F shift M n = F shift M n
37 35 36 clim M F shift M A A x + m n m F shift M n F shift M n A < x
38 31 34 37 3imtr4d M F A F shift M A