Metamath Proof Explorer


Theorem climsubc1mpt

Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climsubc1mpt.k k φ
climsubc1mpt.z Z = M
climsubc1mpt.m φ M
climsubc1mpt.b φ A
climsubc1mpt.a φ k Z B
climsubc1mpt.c φ k Z B C
Assertion climsubc1mpt φ k Z A B A C

Proof

Step Hyp Ref Expression
1 climsubc1mpt.k k φ
2 climsubc1mpt.z Z = M
3 climsubc1mpt.m φ M
4 climsubc1mpt.b φ A
5 climsubc1mpt.a φ k Z B
6 climsubc1mpt.c φ k Z B C
7 4 adantr φ k Z A
8 3 2 4 climconstmpt φ k Z A A
9 1 2 3 7 5 8 6 climsubmpt φ k Z A B A C