Metamath Proof Explorer


Theorem climsubc2mpt

Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climsubc2mpt.k k φ
climsubc2mpt.z Z = M
climsubc2mpt.m φ M
climsubc2mpt.a φ k Z A
climsubc2mpt.c φ k Z A C
climsubc2mpt.b φ B
Assertion climsubc2mpt φ k Z A B C B

Proof

Step Hyp Ref Expression
1 climsubc2mpt.k k φ
2 climsubc2mpt.z Z = M
3 climsubc2mpt.m φ M
4 climsubc2mpt.a φ k Z A
5 climsubc2mpt.c φ k Z A C
6 climsubc2mpt.b φ B
7 6 adantr φ k Z B
8 3 2 6 climconstmpt φ k Z B B
9 1 2 3 4 7 5 8 climsubmpt φ k Z A B C B