Metamath Proof Explorer


Theorem climsubmpt

Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climsubmpt.k k φ
climsubmpt.z Z = M
climsubmpt.m φ M
climsubmpt.a φ k Z A
climsubmpt.b φ k Z B
climsubmpt.c φ k Z A C
climsubmpt.d φ k Z B D
Assertion climsubmpt φ k Z A B C D

Proof

Step Hyp Ref Expression
1 climsubmpt.k k φ
2 climsubmpt.z Z = M
3 climsubmpt.m φ M
4 climsubmpt.a φ k Z A
5 climsubmpt.b φ k Z B
6 climsubmpt.c φ k Z A C
7 climsubmpt.d φ k Z B D
8 2 fvexi Z V
9 8 mptex k Z A B V
10 9 a1i φ k Z A B V
11 simpr φ j Z j Z
12 nfv k j Z
13 1 12 nfan k φ j Z
14 nfcv _ k j
15 14 nfcsb1 _ k j / k A
16 15 nfel1 k j / k A
17 13 16 nfim k φ j Z j / k A
18 eleq1w k = j k Z j Z
19 18 anbi2d k = j φ k Z φ j Z
20 csbeq1a k = j A = j / k A
21 20 eleq1d k = j A j / k A
22 19 21 imbi12d k = j φ k Z A φ j Z j / k A
23 17 22 4 chvarfv φ j Z j / k A
24 eqid k Z A = k Z A
25 14 15 20 24 fvmptf j Z j / k A k Z A j = j / k A
26 11 23 25 syl2anc φ j Z k Z A j = j / k A
27 26 23 eqeltrd φ j Z k Z A j
28 14 nfcsb1 _ k j / k B
29 nfcv _ k
30 28 29 nfel k j / k B
31 13 30 nfim k φ j Z j / k B
32 csbeq1a k = j B = j / k B
33 32 eleq1d k = j B j / k B
34 19 33 imbi12d k = j φ k Z B φ j Z j / k B
35 31 34 5 chvarfv φ j Z j / k B
36 eqid k Z B = k Z B
37 14 28 32 36 fvmptf j Z j / k B k Z B j = j / k B
38 11 35 37 syl2anc φ j Z k Z B j = j / k B
39 38 35 eqeltrd φ j Z k Z B j
40 ovexd φ j Z j / k A j / k B V
41 nfcv _ k
42 15 41 28 nfov _ k j / k A j / k B
43 20 32 oveq12d k = j A B = j / k A j / k B
44 eqid k Z A B = k Z A B
45 14 42 43 44 fvmptf j Z j / k A j / k B V k Z A B j = j / k A j / k B
46 11 40 45 syl2anc φ j Z k Z A B j = j / k A j / k B
47 26 38 oveq12d φ j Z k Z A j k Z B j = j / k A j / k B
48 46 47 eqtr4d φ j Z k Z A B j = k Z A j k Z B j
49 2 3 6 10 7 27 39 48 climsub φ k Z A B C D