Metamath Proof Explorer


Theorem climsup

Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of Gleason p. 180. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)

Ref Expression
Hypotheses climsup.1 Z = M
climsup.2 φ M
climsup.3 φ F : Z
climsup.4 φ k Z F k F k + 1
climsup.5 φ x k Z F k x
Assertion climsup φ F sup ran F <

Proof

Step Hyp Ref Expression
1 climsup.1 Z = M
2 climsup.2 φ M
3 climsup.3 φ F : Z
4 climsup.4 φ k Z F k F k + 1
5 climsup.5 φ x k Z F k x
6 3 frnd φ ran F
7 3 ffnd φ F Fn Z
8 uzid M M M
9 2 8 syl φ M M
10 9 1 eleqtrrdi φ M Z
11 fnfvelrn F Fn Z M Z F M ran F
12 7 10 11 syl2anc φ F M ran F
13 12 ne0d φ ran F
14 breq1 y = F k y x F k x
15 14 ralrn F Fn Z y ran F y x k Z F k x
16 15 rexbidv F Fn Z x y ran F y x x k Z F k x
17 7 16 syl φ x y ran F y x x k Z F k x
18 5 17 mpbird φ x y ran F y x
19 6 13 18 3jca φ ran F ran F x y ran F y x
20 suprcl ran F ran F x y ran F y x sup ran F <
21 19 20 syl φ sup ran F <
22 ltsubrp sup ran F < y + sup ran F < y < sup ran F <
23 21 22 sylan φ y + sup ran F < y < sup ran F <
24 19 adantr φ y + ran F ran F x y ran F y x
25 rpre y + y
26 resubcl sup ran F < y sup ran F < y
27 21 25 26 syl2an φ y + sup ran F < y
28 suprlub ran F ran F x y ran F y x sup ran F < y sup ran F < y < sup ran F < k ran F sup ran F < y < k
29 24 27 28 syl2anc φ y + sup ran F < y < sup ran F < k ran F sup ran F < y < k
30 23 29 mpbid φ y + k ran F sup ran F < y < k
31 breq2 k = F j sup ran F < y < k sup ran F < y < F j
32 31 rexrn F Fn Z k ran F sup ran F < y < k j Z sup ran F < y < F j
33 7 32 syl φ k ran F sup ran F < y < k j Z sup ran F < y < F j
34 33 biimpa φ k ran F sup ran F < y < k j Z sup ran F < y < F j
35 30 34 syldan φ y + j Z sup ran F < y < F j
36 ffvelrn F : Z j Z F j
37 3 36 sylan φ j Z F j
38 37 ad2ant2r φ y + j Z k j F j
39 3 adantr φ y + F : Z
40 1 uztrn2 j Z k j k Z
41 ffvelrn F : Z k Z F k
42 39 40 41 syl2an φ y + j Z k j F k
43 21 ad2antrr φ y + j Z k j sup ran F <
44 simprr φ y + j Z k j k j
45 fzssuz j k j
46 uzss j M j M
47 46 1 sseqtrrdi j M j Z
48 47 1 eleq2s j Z j Z
49 48 ad2antrl φ y + j Z k j j Z
50 45 49 sstrid φ y + j Z k j j k Z
51 ffvelrn F : Z n Z F n
52 51 ralrimiva F : Z n Z F n
53 3 52 syl φ n Z F n
54 53 ad2antrr φ y + j Z k j n Z F n
55 ssralv j k Z n Z F n n j k F n
56 50 54 55 sylc φ y + j Z k j n j k F n
57 56 r19.21bi φ y + j Z k j n j k F n
58 fzssuz j k 1 j
59 58 49 sstrid φ y + j Z k j j k 1 Z
60 59 sselda φ y + j Z k j n j k 1 n Z
61 4 ralrimiva φ k Z F k F k + 1
62 61 ad2antrr φ y + j Z k j k Z F k F k + 1
63 fveq2 k = n F k = F n
64 fvoveq1 k = n F k + 1 = F n + 1
65 63 64 breq12d k = n F k F k + 1 F n F n + 1
66 65 rspccva k Z F k F k + 1 n Z F n F n + 1
67 62 66 sylan φ y + j Z k j n Z F n F n + 1
68 60 67 syldan φ y + j Z k j n j k 1 F n F n + 1
69 44 57 68 monoord φ y + j Z k j F j F k
70 38 42 43 69 lesub2dd φ y + j Z k j sup ran F < F k sup ran F < F j
71 43 42 resubcld φ y + j Z k j sup ran F < F k
72 43 38 resubcld φ y + j Z k j sup ran F < F j
73 25 ad2antlr φ y + j Z k j y
74 lelttr sup ran F < F k sup ran F < F j y sup ran F < F k sup ran F < F j sup ran F < F j < y sup ran F < F k < y
75 71 72 73 74 syl3anc φ y + j Z k j sup ran F < F k sup ran F < F j sup ran F < F j < y sup ran F < F k < y
76 70 75 mpand φ y + j Z k j sup ran F < F j < y sup ran F < F k < y
77 ltsub23 sup ran F < y F j sup ran F < y < F j sup ran F < F j < y
78 43 73 38 77 syl3anc φ y + j Z k j sup ran F < y < F j sup ran F < F j < y
79 19 ad2antrr φ y + j Z k j ran F ran F x y ran F y x
80 7 adantr φ y + F Fn Z
81 fnfvelrn F Fn Z k Z F k ran F
82 80 40 81 syl2an φ y + j Z k j F k ran F
83 suprub ran F ran F x y ran F y x F k ran F F k sup ran F <
84 79 82 83 syl2anc φ y + j Z k j F k sup ran F <
85 42 43 84 abssuble0d φ y + j Z k j F k sup ran F < = sup ran F < F k
86 85 breq1d φ y + j Z k j F k sup ran F < < y sup ran F < F k < y
87 76 78 86 3imtr4d φ y + j Z k j sup ran F < y < F j F k sup ran F < < y
88 87 anassrs φ y + j Z k j sup ran F < y < F j F k sup ran F < < y
89 88 ralrimdva φ y + j Z sup ran F < y < F j k j F k sup ran F < < y
90 89 reximdva φ y + j Z sup ran F < y < F j j Z k j F k sup ran F < < y
91 35 90 mpd φ y + j Z k j F k sup ran F < < y
92 91 ralrimiva φ y + j Z k j F k sup ran F < < y
93 1 fvexi Z V
94 fex F : Z Z V F V
95 3 93 94 sylancl φ F V
96 eqidd φ k Z F k = F k
97 21 recnd φ sup ran F <
98 3 41 sylan φ k Z F k
99 98 recnd φ k Z F k
100 1 2 95 96 97 99 clim2c φ F sup ran F < y + j Z k j F k sup ran F < < y
101 92 100 mpbird φ F sup ran F <