Metamath Proof Explorer


Theorem climsuse

Description: A subsequence G of a converging sequence F , converges to the same limit. I is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climsuse.1 k φ
climsuse.3 _ k F
climsuse.2 _ k G
climsuse.4 _ k I
climsuse.5 Z = M
climsuse.6 φ M
climsuse.7 φ F X
climsuse.8 φ k Z F k
climsuse.9 φ F A
climsuse.10 φ I M Z
climsuse.11 φ k Z I k + 1 I k + 1
climsuse.12 φ G Y
climsuse.13 φ k Z G k = F I k
Assertion climsuse φ G A

Proof

Step Hyp Ref Expression
1 climsuse.1 k φ
2 climsuse.3 _ k F
3 climsuse.2 _ k G
4 climsuse.4 _ k I
5 climsuse.5 Z = M
6 climsuse.6 φ M
7 climsuse.7 φ F X
8 climsuse.8 φ k Z F k
9 climsuse.9 φ F A
10 climsuse.10 φ I M Z
11 climsuse.11 φ k Z I k + 1 I k + 1
12 climsuse.12 φ G Y
13 climsuse.13 φ k Z G k = F I k
14 climcl F A A
15 9 14 syl φ A
16 nfv x φ
17 simpllr φ x + j i j F i F i A < x M j j
18 6 ad4antr φ x + j i j F i F i A < x ¬ M j M
19 17 18 ifclda φ x + j i j F i F i A < x if M j j M
20 nfv i φ x + j
21 nfra1 i i j F i F i A < x
22 20 21 nfan i φ x + j i j F i F i A < x
23 simp-4l φ x + j i j F i F i A < x i if M j j M φ
24 simpllr φ x + j i j F i F i A < x i if M j j M j
25 23 24 jca φ x + j i j F i F i A < x i if M j j M φ j
26 simpr φ x + j i j F i F i A < x i if M j j M i if M j j M
27 simpr φ j M j M j
28 6 anim1i φ j M j
29 28 adantr φ j M j M j
30 eluz M j j M M j
31 29 30 syl φ j M j j M M j
32 27 31 mpbird φ j M j j M
33 simpll φ j ¬ M j φ
34 uzid M M M
35 33 6 34 3syl φ j ¬ M j M M
36 32 35 ifclda φ j if M j j M M
37 uzss if M j j M M if M j j M M
38 36 37 syl φ j if M j j M M
39 38 5 sseqtrrdi φ j if M j j M Z
40 39 sseld φ j i if M j j M i Z
41 25 26 40 sylc φ x + j i j F i F i A < x i if M j j M i Z
42 nfv k i Z
43 1 42 nfan k φ i Z
44 nfcv _ k i
45 3 44 nffv _ k G i
46 4 44 nffv _ k I i
47 2 46 nffv _ k F I i
48 45 47 nfeq k G i = F I i
49 43 48 nfim k φ i Z G i = F I i
50 eleq1 k = i k Z i Z
51 50 anbi2d k = i φ k Z φ i Z
52 fveq2 k = i G k = G i
53 2fveq3 k = i F I k = F I i
54 52 53 eqeq12d k = i G k = F I k G i = F I i
55 51 54 imbi12d k = i φ k Z G k = F I k φ i Z G i = F I i
56 49 55 13 chvarfv φ i Z G i = F I i
57 5 eleq2i i Z i M
58 57 biimpi i Z i M
59 58 adantl φ i Z i M
60 uzss i M i M
61 59 60 syl φ i Z i M
62 nfcv _ k i + 1
63 4 62 nffv _ k I i + 1
64 nfcv _ k
65 nfcv _ k +
66 nfcv _ k 1
67 46 65 66 nfov _ k I i + 1
68 64 67 nffv _ k I i + 1
69 63 68 nfel k I i + 1 I i + 1
70 43 69 nfim k φ i Z I i + 1 I i + 1
71 fvoveq1 k = i I k + 1 = I i + 1
72 fveq2 k = i I k = I i
73 72 fvoveq1d k = i I k + 1 = I i + 1
74 71 73 eleq12d k = i I k + 1 I k + 1 I i + 1 I i + 1
75 51 74 imbi12d k = i φ k Z I k + 1 I k + 1 φ i Z I i + 1 I i + 1
76 70 75 11 chvarfv φ i Z I i + 1 I i + 1
77 5 6 10 76 climsuselem1 φ i Z I i i
78 61 77 sseldd φ i Z I i M
79 78 5 eleqtrrdi φ i Z I i Z
80 79 ex φ i Z I i Z
81 80 imdistani φ i Z φ I i Z
82 42 nfci _ k Z
83 46 82 nfel k I i Z
84 1 83 nfan k φ I i Z
85 47 nfel1 k F I i
86 84 85 nfim k φ I i Z F I i
87 eleq1 k = I i k Z I i Z
88 87 anbi2d k = I i φ k Z φ I i Z
89 fveq2 k = I i F k = F I i
90 89 eleq1d k = I i F k F I i
91 88 90 imbi12d k = I i φ k Z F k φ I i Z F I i
92 46 86 91 8 vtoclgf I i Z φ I i Z F I i
93 79 81 92 sylc φ i Z F I i
94 56 93 eqeltrd φ i Z G i
95 23 41 94 syl2anc φ x + j i j F i F i A < x i if M j j M G i
96 23 41 56 syl2anc φ x + j i j F i F i A < x i if M j j M G i = F I i
97 96 fvoveq1d φ x + j i j F i F i A < x i if M j j M G i A = F I i A
98 fveq2 i = h F i = F h
99 98 eleq1d i = h F i F h
100 98 fvoveq1d i = h F i A = F h A
101 100 breq1d i = h F i A < x F h A < x
102 99 101 anbi12d i = h F i F i A < x F h F h A < x
103 102 cbvralvw i j F i F i A < x h j F h F h A < x
104 103 biimpi i j F i F i A < x h j F h F h A < x
105 104 ad2antlr φ x + j i j F i F i A < x i if M j j M h j F h F h A < x
106 zre j j
107 106 3ad2ant2 φ j i if M j j M j
108 simp3 φ j i if M j j M i if M j j M
109 eluzelz i if M j j M i
110 zre i i
111 108 109 110 3syl φ j i if M j j M i
112 simp1 φ j i if M j j M φ
113 6 zred φ M
114 112 113 syl φ j i if M j j M M
115 simpl2 φ j i if M j j M M j j
116 115 zred φ j i if M j j M M j j
117 114 adantr φ j i if M j j M ¬ M j M
118 116 117 ifclda φ j i if M j j M if M j j M
119 max1 M j M if M j j M
120 114 107 119 syl2anc φ j i if M j j M M if M j j M
121 eluzle i if M j j M if M j j M i
122 121 3ad2ant3 φ j i if M j j M if M j j M i
123 114 118 111 120 122 letrd φ j i if M j j M M i
124 112 6 syl φ j i if M j j M M
125 109 3ad2ant3 φ j i if M j j M i
126 eluz M i i M M i
127 124 125 126 syl2anc φ j i if M j j M i M M i
128 123 127 mpbird φ j i if M j j M i M
129 128 5 eleqtrrdi φ j i if M j j M i Z
130 112 129 jca φ j i if M j j M φ i Z
131 eluzelre I i M I i
132 130 78 131 3syl φ j i if M j j M I i
133 max2 M j j if M j j M
134 114 107 133 syl2anc φ j i if M j j M j if M j j M
135 107 118 111 134 122 letrd φ j i if M j j M j i
136 eluzle I i i i I i
137 130 77 136 3syl φ j i if M j j M i I i
138 107 111 132 135 137 letrd φ j i if M j j M j I i
139 simp2 φ j i if M j j M j
140 eluzelz I i i I i
141 130 77 140 3syl φ j i if M j j M I i
142 eluz j I i I i j j I i
143 139 141 142 syl2anc φ j i if M j j M I i j j I i
144 138 143 mpbird φ j i if M j j M I i j
145 23 24 26 144 syl3anc φ x + j i j F i F i A < x i if M j j M I i j
146 fveq2 h = I i F h = F I i
147 146 eleq1d h = I i F h F I i
148 146 fvoveq1d h = I i F h A = F I i A
149 148 breq1d h = I i F h A < x F I i A < x
150 147 149 anbi12d h = I i F h F h A < x F I i F I i A < x
151 150 rspccva h j F h F h A < x I i j F I i F I i A < x
152 151 simprd h j F h F h A < x I i j F I i A < x
153 105 145 152 syl2anc φ x + j i j F i F i A < x i if M j j M F I i A < x
154 97 153 eqbrtrd φ x + j i j F i F i A < x i if M j j M G i A < x
155 95 154 jca φ x + j i j F i F i A < x i if M j j M G i G i A < x
156 155 ex φ x + j i j F i F i A < x i if M j j M G i G i A < x
157 22 156 ralrimi φ x + j i j F i F i A < x i if M j j M G i G i A < x
158 fveq2 l = if M j j M l = if M j j M
159 158 raleqdv l = if M j j M i l G i G i A < x i if M j j M G i G i A < x
160 159 rspcev if M j j M i if M j j M G i G i A < x l i l G i G i A < x
161 19 157 160 syl2anc φ x + j i j F i F i A < x l i l G i G i A < x
162 eqidd φ i F i = F i
163 7 162 clim φ F A A x + j i j F i F i A < x
164 9 163 mpbid φ A x + j i j F i F i A < x
165 164 simprd φ x + j i j F i F i A < x
166 165 r19.21bi φ x + j i j F i F i A < x
167 161 166 r19.29a φ x + l i l G i G i A < x
168 167 ex φ x + l i l G i G i A < x
169 16 168 ralrimi φ x + l i l G i G i A < x
170 eqidd φ i G i = G i
171 12 170 clim φ G A A x + l i l G i G i A < x
172 15 169 171 mpbir2and φ G A