Metamath Proof Explorer


Theorem climsuselem1

Description: The subsequence index I has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climsuselem1.1 Z = M
climsuselem1.2 φ M
climsuselem1.3 φ I M Z
climsuselem1.4 φ k Z I k + 1 I k + 1
Assertion climsuselem1 φ K Z I K K

Proof

Step Hyp Ref Expression
1 climsuselem1.1 Z = M
2 climsuselem1.2 φ M
3 climsuselem1.3 φ I M Z
4 climsuselem1.4 φ k Z I k + 1 I k + 1
5 1 eleq2i K Z K M
6 5 biimpi K Z K M
7 6 adantl φ K Z K M
8 simpl φ K Z φ
9 fveq2 j = M I j = I M
10 fveq2 j = M j = M
11 9 10 eleq12d j = M I j j I M M
12 11 imbi2d j = M φ I j j φ I M M
13 fveq2 j = k I j = I k
14 fveq2 j = k j = k
15 13 14 eleq12d j = k I j j I k k
16 15 imbi2d j = k φ I j j φ I k k
17 fveq2 j = k + 1 I j = I k + 1
18 fveq2 j = k + 1 j = k + 1
19 17 18 eleq12d j = k + 1 I j j I k + 1 k + 1
20 19 imbi2d j = k + 1 φ I j j φ I k + 1 k + 1
21 fveq2 j = K I j = I K
22 fveq2 j = K j = K
23 21 22 eleq12d j = K I j j I K K
24 23 imbi2d j = K φ I j j φ I K K
25 3 1 eleqtrdi φ I M M
26 25 a1i M φ I M M
27 simpr k M φ I k k φ φ
28 simpll k M φ I k k φ k M
29 simplr k M φ I k k φ φ I k k
30 27 29 mpd k M φ I k k φ I k k
31 eluzelz k M k
32 31 3ad2ant2 φ k M I k k k
33 32 peano2zd φ k M I k k k + 1
34 33 zred φ k M I k k k + 1
35 eluzelre I k k I k
36 35 3ad2ant3 φ k M I k k I k
37 1red φ k M I k k 1
38 36 37 readdcld φ k M I k k I k + 1
39 1 eqimss2i M Z
40 39 a1i φ M Z
41 40 sseld φ k M k Z
42 41 imdistani φ k M φ k Z
43 42 4 syl φ k M I k + 1 I k + 1
44 43 3adant3 φ k M I k k I k + 1 I k + 1
45 eluzelz I k + 1 I k + 1 I k + 1
46 44 45 syl φ k M I k k I k + 1
47 46 zred φ k M I k k I k + 1
48 32 zred φ k M I k k k
49 eluzle I k k k I k
50 49 3ad2ant3 φ k M I k k k I k
51 48 36 37 50 leadd1dd φ k M I k k k + 1 I k + 1
52 eluzle I k + 1 I k + 1 I k + 1 I k + 1
53 44 52 syl φ k M I k k I k + 1 I k + 1
54 34 38 47 51 53 letrd φ k M I k k k + 1 I k + 1
55 eluz k + 1 I k + 1 I k + 1 k + 1 k + 1 I k + 1
56 33 46 55 syl2anc φ k M I k k I k + 1 k + 1 k + 1 I k + 1
57 54 56 mpbird φ k M I k k I k + 1 k + 1
58 27 28 30 57 syl3anc k M φ I k k φ I k + 1 k + 1
59 58 exp31 k M φ I k k φ I k + 1 k + 1
60 12 16 20 24 26 59 uzind4 K M φ I K K
61 7 8 60 sylc φ K Z I K K