Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
|
2 |
|
nnuz |
|
3 |
|
1zzd |
|
4 |
|
climcl |
|
5 |
4
|
3ad2ant1 |
|
6 |
|
climcl |
|
7 |
6
|
3ad2ant2 |
|
8 |
5 7
|
subcld |
|
9 |
|
simp3 |
|
10 |
5 7 9
|
subne0d |
|
11 |
8 10
|
absrpcld |
|
12 |
11
|
rphalfcld |
|
13 |
|
eqidd |
|
14 |
|
simp1 |
|
15 |
2 3 12 13 14
|
climi |
|
16 |
|
simp2 |
|
17 |
2 3 12 13 16
|
climi |
|
18 |
2
|
rexanuz2 |
|
19 |
15 17 18
|
sylanbrc |
|
20 |
|
nnz |
|
21 |
|
uzid |
|
22 |
|
ne0i |
|
23 |
|
r19.2z |
|
24 |
23
|
ex |
|
25 |
20 21 22 24
|
4syl |
|
26 |
|
simpr |
|
27 |
|
simpll |
|
28 |
26 27
|
abssubd |
|
29 |
28
|
breq1d |
|
30 |
|
simplr |
|
31 |
|
subcl |
|
32 |
31
|
adantr |
|
33 |
32
|
abscld |
|
34 |
|
abs3lem |
|
35 |
27 30 26 33 34
|
syl22anc |
|
36 |
33
|
ltnrd |
|
37 |
36
|
pm2.21d |
|
38 |
35 37
|
syld |
|
39 |
38
|
expd |
|
40 |
29 39
|
sylbid |
|
41 |
40
|
impr |
|
42 |
41
|
adantld |
|
43 |
42
|
expimpd |
|
44 |
43
|
rexlimdvw |
|
45 |
25 44
|
sylan9r |
|
46 |
45
|
rexlimdva |
|
47 |
5 7 46
|
syl2anc |
|
48 |
19 47
|
mpd |
|
49 |
48
|
3expia |
|
50 |
49
|
necon4ad |
|
51 |
1 50
|
mpi |
|