Metamath Proof Explorer


Theorem climuz

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses climuz.k _ k F
climuz.m φ M
climuz.z Z = M
climuz.f φ F : Z
Assertion climuz φ F A A x + j Z k j F k A < x

Proof

Step Hyp Ref Expression
1 climuz.k _ k F
2 climuz.m φ M
3 climuz.z Z = M
4 climuz.f φ F : Z
5 2 3 4 climuzlem φ F A A y + i Z l i F l A < y
6 breq2 y = x F l A < y F l A < x
7 6 ralbidv y = x l i F l A < y l i F l A < x
8 7 rexbidv y = x i Z l i F l A < y i Z l i F l A < x
9 fveq2 i = j i = j
10 9 raleqdv i = j l i F l A < x l j F l A < x
11 nfcv _ k abs
12 nfcv _ k l
13 1 12 nffv _ k F l
14 nfcv _ k
15 nfcv _ k A
16 13 14 15 nfov _ k F l A
17 11 16 nffv _ k F l A
18 nfcv _ k <
19 nfcv _ k x
20 17 18 19 nfbr k F l A < x
21 nfv l F k A < x
22 fveq2 l = k F l = F k
23 22 fvoveq1d l = k F l A = F k A
24 23 breq1d l = k F l A < x F k A < x
25 20 21 24 cbvralw l j F l A < x k j F k A < x
26 25 a1i i = j l j F l A < x k j F k A < x
27 10 26 bitrd i = j l i F l A < x k j F k A < x
28 27 cbvrexvw i Z l i F l A < x j Z k j F k A < x
29 28 a1i y = x i Z l i F l A < x j Z k j F k A < x
30 8 29 bitrd y = x i Z l i F l A < y j Z k j F k A < x
31 30 cbvralvw y + i Z l i F l A < y x + j Z k j F k A < x
32 31 anbi2i A y + i Z l i F l A < y A x + j Z k j F k A < x
33 32 a1i φ A y + i Z l i F l A < y A x + j Z k j F k A < x
34 5 33 bitrd φ F A A x + j Z k j F k A < x