Metamath Proof Explorer


Theorem clm0

Description: The zero of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F = Scalar W
Assertion clm0 W CMod 0 = 0 F

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 eqid Base F = Base F
3 1 2 clmsubrg W CMod Base F SubRing fld
4 eqid fld 𝑠 Base F = fld 𝑠 Base F
5 cnfld0 0 = 0 fld
6 4 5 subrg0 Base F SubRing fld 0 = 0 fld 𝑠 Base F
7 3 6 syl W CMod 0 = 0 fld 𝑠 Base F
8 1 2 clmsca W CMod F = fld 𝑠 Base F
9 8 fveq2d W CMod 0 F = 0 fld 𝑠 Base F
10 7 9 eqtr4d W CMod 0 = 0 F