Metamath Proof Explorer


Theorem clm0vs

Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. ( lmod0vs analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0vs.v V = Base W
clm0vs.f F = Scalar W
clm0vs.s · ˙ = W
clm0vs.z 0 ˙ = 0 W
Assertion clm0vs W CMod X V 0 · ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 clm0vs.v V = Base W
2 clm0vs.f F = Scalar W
3 clm0vs.s · ˙ = W
4 clm0vs.z 0 ˙ = 0 W
5 2 clm0 W CMod 0 = 0 F
6 5 adantr W CMod X V 0 = 0 F
7 6 oveq1d W CMod X V 0 · ˙ X = 0 F · ˙ X
8 clmlmod W CMod W LMod
9 eqid 0 F = 0 F
10 1 2 3 9 4 lmod0vs W LMod X V 0 F · ˙ X = 0 ˙
11 8 10 sylan W CMod X V 0 F · ˙ X = 0 ˙
12 7 11 eqtrd W CMod X V 0 · ˙ X = 0 ˙