Metamath Proof Explorer


Theorem clm1

Description: The identity of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F = Scalar W
Assertion clm1 W CMod 1 = 1 F

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 eqid Base F = Base F
3 1 2 clmsubrg W CMod Base F SubRing fld
4 eqid fld 𝑠 Base F = fld 𝑠 Base F
5 cnfld1 1 = 1 fld
6 4 5 subrg1 Base F SubRing fld 1 = 1 fld 𝑠 Base F
7 3 6 syl W CMod 1 = 1 fld 𝑠 Base F
8 1 2 clmsca W CMod F = fld 𝑠 Base F
9 8 fveq2d W CMod 1 F = 1 fld 𝑠 Base F
10 7 9 eqtr4d W CMod 1 = 1 F