Metamath Proof Explorer


Theorem clmabl

Description: A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmabl W CMod W Abel

Proof

Step Hyp Ref Expression
1 clmlmod W CMod W LMod
2 lmodabl W LMod W Abel
3 1 2 syl W CMod W Abel