Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex modules
clmabl
Next ⟩
clmring
Metamath Proof Explorer
Ascii
Unicode
Theorem
clmabl
Description:
A subcomplex module is an abelian group.
(Contributed by
Mario Carneiro
, 16-Oct-2015)
Ref
Expression
Assertion
clmabl
⊢
W
∈
CMod
→
W
∈
Abel
Proof
Step
Hyp
Ref
Expression
1
clmlmod
⊢
W
∈
CMod
→
W
∈
LMod
2
lmodabl
⊢
W
∈
LMod
→
W
∈
Abel
3
1
2
syl
⊢
W
∈
CMod
→
W
∈
Abel