Metamath Proof Explorer


Theorem clmabs

Description: Norm in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F = Scalar W
clmsub.k K = Base F
Assertion clmabs W CMod A K A = norm F A

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 clmsub.k K = Base F
3 1 2 clmsca W CMod F = fld 𝑠 K
4 3 fveq2d W CMod norm F = norm fld 𝑠 K
5 4 adantr W CMod A K norm F = norm fld 𝑠 K
6 5 fveq1d W CMod A K norm F A = norm fld 𝑠 K A
7 1 2 clmsubrg W CMod K SubRing fld
8 subrgsubg K SubRing fld K SubGrp fld
9 7 8 syl W CMod K SubGrp fld
10 eqid fld 𝑠 K = fld 𝑠 K
11 cnfldnm abs = norm fld
12 eqid norm fld 𝑠 K = norm fld 𝑠 K
13 10 11 12 subgnm2 K SubGrp fld A K norm fld 𝑠 K A = A
14 9 13 sylan W CMod A K norm fld 𝑠 K A = A
15 6 14 eqtr2d W CMod A K A = norm F A