Metamath Proof Explorer


Theorem clmacl

Description: Closure of ring addition for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F = Scalar W
clmsub.k K = Base F
Assertion clmacl W CMod X K Y K X + Y K

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 clmsub.k K = Base F
3 1 2 clmsubrg W CMod K SubRing fld
4 cnfldadd + = + fld
5 4 subrgacl K SubRing fld X K Y K X + Y K
6 3 5 syl3an1 W CMod X K Y K X + Y K