Metamath Proof Explorer


Theorem clmfgrp

Description: The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F = Scalar W
Assertion clmfgrp W CMod F Grp

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 clmlmod W CMod W LMod
3 1 lmodfgrp W LMod F Grp
4 2 3 syl W CMod F Grp