Metamath Proof Explorer


Theorem clmgmOLD

Description: Obsolete version of mgmcl as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis clmgmOLD.1 X = dom dom G
Assertion clmgmOLD G Magma A X B X A G B X

Proof

Step Hyp Ref Expression
1 clmgmOLD.1 X = dom dom G
2 1 ismgmOLD G Magma G Magma G : X × X X
3 fovrn G : X × X X A X B X A G B X
4 3 3exp G : X × X X A X B X A G B X
5 2 4 syl6bi G Magma G Magma A X B X A G B X
6 5 pm2.43i G Magma A X B X A G B X
7 6 3imp G Magma A X B X A G B X