Metamath Proof Explorer


Theorem clmgrp

Description: A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmgrp W CMod W Grp

Proof

Step Hyp Ref Expression
1 clmlmod W CMod W LMod
2 lmodgrp W LMod W Grp
3 1 2 syl W CMod W Grp