Metamath Proof Explorer


Theorem clmlmod

Description: A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion clmlmod W CMod W LMod

Proof

Step Hyp Ref Expression
1 eqid Scalar W = Scalar W
2 eqid Base Scalar W = Base Scalar W
3 1 2 isclm W CMod W LMod Scalar W = fld 𝑠 Base Scalar W Base Scalar W SubRing fld
4 3 simp1bi W CMod W LMod