Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex modules
clmlmod
Next ⟩
clmgrp
Metamath Proof Explorer
Ascii
Unicode
Theorem
clmlmod
Description:
A subcomplex module is a left module.
(Contributed by
Mario Carneiro
, 16-Oct-2015)
Ref
Expression
Assertion
clmlmod
⊢
W
∈
CMod
→
W
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
2
eqid
⊢
Base
Scalar
⁡
W
=
Base
Scalar
⁡
W
3
1
2
isclm
⊢
W
∈
CMod
↔
W
∈
LMod
∧
Scalar
⁡
W
=
ℂ
fld
↾
𝑠
Base
Scalar
⁡
W
∧
Base
Scalar
⁡
W
∈
SubRing
⁡
ℂ
fld
4
3
simp1bi
⊢
W
∈
CMod
→
W
∈
LMod