Metamath Proof Explorer


Theorem clmmul

Description: The multiplication of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f F = Scalar W
Assertion clmmul W CMod × = F

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 fvex Base F V
3 eqid fld 𝑠 Base F = fld 𝑠 Base F
4 cnfldmul × = fld
5 3 4 ressmulr Base F V × = fld 𝑠 Base F
6 2 5 ax-mp × = fld 𝑠 Base F
7 eqid Base F = Base F
8 1 7 clmsca W CMod F = fld 𝑠 Base F
9 8 fveq2d W CMod F = fld 𝑠 Base F
10 6 9 eqtr4id W CMod × = F