Step |
Hyp |
Ref |
Expression |
1 |
|
clmmulg.1 |
|
2 |
|
clmmulg.2 |
|
3 |
|
clmmulg.3 |
|
4 |
|
oveq1 |
|
5 |
|
oveq1 |
|
6 |
4 5
|
eqeq12d |
|
7 |
|
oveq1 |
|
8 |
|
oveq1 |
|
9 |
7 8
|
eqeq12d |
|
10 |
|
oveq1 |
|
11 |
|
oveq1 |
|
12 |
10 11
|
eqeq12d |
|
13 |
|
oveq1 |
|
14 |
|
oveq1 |
|
15 |
13 14
|
eqeq12d |
|
16 |
|
oveq1 |
|
17 |
|
oveq1 |
|
18 |
16 17
|
eqeq12d |
|
19 |
|
eqid |
|
20 |
1 19 2
|
mulg0 |
|
21 |
20
|
adantl |
|
22 |
|
eqid |
|
23 |
1 22 3 19
|
clm0vs |
|
24 |
21 23
|
eqtr4d |
|
25 |
|
oveq1 |
|
26 |
|
clmgrp |
|
27 |
26
|
grpmndd |
|
28 |
27
|
ad2antrr |
|
29 |
|
simpr |
|
30 |
|
simplr |
|
31 |
|
eqid |
|
32 |
1 2 31
|
mulgnn0p1 |
|
33 |
28 29 30 32
|
syl3anc |
|
34 |
|
simpll |
|
35 |
|
eqid |
|
36 |
22 35
|
clmzss |
|
37 |
36
|
ad2antrr |
|
38 |
|
nn0z |
|
39 |
38
|
adantl |
|
40 |
37 39
|
sseldd |
|
41 |
|
1zzd |
|
42 |
37 41
|
sseldd |
|
43 |
1 22 3 35 31
|
clmvsdir |
|
44 |
34 40 42 30 43
|
syl13anc |
|
45 |
1 3
|
clmvs1 |
|
46 |
45
|
adantr |
|
47 |
46
|
oveq2d |
|
48 |
44 47
|
eqtrd |
|
49 |
33 48
|
eqeq12d |
|
50 |
25 49
|
syl5ibr |
|
51 |
50
|
ex |
|
52 |
|
fveq2 |
|
53 |
26
|
ad2antrr |
|
54 |
|
nnz |
|
55 |
54
|
adantl |
|
56 |
|
simplr |
|
57 |
|
eqid |
|
58 |
1 2 57
|
mulgneg |
|
59 |
53 55 56 58
|
syl3anc |
|
60 |
|
simpll |
|
61 |
36
|
ad2antrr |
|
62 |
61 55
|
sseldd |
|
63 |
1 22 3 57 35 60 56 62
|
clmvsneg |
|
64 |
63
|
eqcomd |
|
65 |
59 64
|
eqeq12d |
|
66 |
52 65
|
syl5ibr |
|
67 |
66
|
ex |
|
68 |
6 9 12 15 18 24 51 67
|
zindd |
|
69 |
68
|
3impia |
|
70 |
69
|
3com23 |
|