Metamath Proof Explorer


Theorem clmneg

Description: Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F = Scalar W
clmsub.k K = Base F
Assertion clmneg W CMod A K A = inv g F A

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 clmsub.k K = Base F
3 1 2 clmsca W CMod F = fld 𝑠 K
4 3 fveq2d W CMod inv g F = inv g fld 𝑠 K
5 4 adantr W CMod A K inv g F = inv g fld 𝑠 K
6 5 fveq1d W CMod A K inv g F A = inv g fld 𝑠 K A
7 1 2 clmsubrg W CMod K SubRing fld
8 subrgsubg K SubRing fld K SubGrp fld
9 7 8 syl W CMod K SubGrp fld
10 eqid fld 𝑠 K = fld 𝑠 K
11 eqid inv g fld = inv g fld
12 eqid inv g fld 𝑠 K = inv g fld 𝑠 K
13 10 11 12 subginv K SubGrp fld A K inv g fld A = inv g fld 𝑠 K A
14 9 13 sylan W CMod A K inv g fld A = inv g fld 𝑠 K A
15 1 2 clmsscn W CMod K
16 15 sselda W CMod A K A
17 cnfldneg A inv g fld A = A
18 16 17 syl W CMod A K inv g fld A = A
19 6 14 18 3eqtr2rd W CMod A K A = inv g F A