Metamath Proof Explorer


Theorem clmnegneg

Description: Double negative of a vector. (Contributed by NM, 6-Aug-2007) (Revised by AV, 21-Sep-2021)

Ref Expression
Hypotheses clmpm1dir.v V = Base W
clmpm1dir.s · ˙ = W
clmpm1dir.a + ˙ = + W
Assertion clmnegneg W CMod A V -1 · ˙ -1 · ˙ A = A

Proof

Step Hyp Ref Expression
1 clmpm1dir.v V = Base W
2 clmpm1dir.s · ˙ = W
3 clmpm1dir.a + ˙ = + W
4 neg1mulneg1e1 -1 -1 = 1
5 4 oveq1i -1 -1 · ˙ A = 1 · ˙ A
6 simpl W CMod A V W CMod
7 eqid Scalar W = Scalar W
8 eqid Base Scalar W = Base Scalar W
9 7 8 clmneg1 W CMod 1 Base Scalar W
10 9 adantr W CMod A V 1 Base Scalar W
11 simpr W CMod A V A V
12 1 7 2 8 clmvsass W CMod 1 Base Scalar W 1 Base Scalar W A V -1 -1 · ˙ A = -1 · ˙ -1 · ˙ A
13 6 10 10 11 12 syl13anc W CMod A V -1 -1 · ˙ A = -1 · ˙ -1 · ˙ A
14 1 2 clmvs1 W CMod A V 1 · ˙ A = A
15 5 13 14 3eqtr3a W CMod A V -1 · ˙ -1 · ˙ A = A