Metamath Proof Explorer


Theorem clmopfne

Description: The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008) (Revised by AV, 3-Oct-2021)

Ref Expression
Hypotheses clmopfne.t · ˙ = 𝑠𝑓 W
clmopfne.a + ˙ = + 𝑓 W
Assertion clmopfne W CMod + ˙ · ˙

Proof

Step Hyp Ref Expression
1 clmopfne.t · ˙ = 𝑠𝑓 W
2 clmopfne.a + ˙ = + 𝑓 W
3 clmlmod W CMod W LMod
4 ax-1ne0 1 0
5 4 a1i W CMod 1 0
6 eqid Scalar W = Scalar W
7 6 clm1 W CMod 1 = 1 Scalar W
8 6 clm0 W CMod 0 = 0 Scalar W
9 5 7 8 3netr3d W CMod 1 Scalar W 0 Scalar W
10 eqid Base W = Base W
11 eqid Base Scalar W = Base Scalar W
12 eqid 0 Scalar W = 0 Scalar W
13 eqid 1 Scalar W = 1 Scalar W
14 1 2 10 6 11 12 13 lmodfopne W LMod 1 Scalar W 0 Scalar W + ˙ · ˙
15 3 9 14 syl2anc W CMod + ˙ · ˙