Metamath Proof Explorer


Theorem clmopfne

Description: The (functionalized) operations of addition and multiplication by a scalar of a subcomplex module cannot be identical. (Contributed by NM, 31-May-2008) (Revised by AV, 3-Oct-2021)

Ref Expression
Hypotheses clmopfne.t ·˙=𝑠𝑓W
clmopfne.a +˙=+𝑓W
Assertion clmopfne WCMod+˙·˙

Proof

Step Hyp Ref Expression
1 clmopfne.t ·˙=𝑠𝑓W
2 clmopfne.a +˙=+𝑓W
3 clmlmod WCModWLMod
4 ax-1ne0 10
5 4 a1i WCMod10
6 eqid ScalarW=ScalarW
7 6 clm1 WCMod1=1ScalarW
8 6 clm0 WCMod0=0ScalarW
9 5 7 8 3netr3d WCMod1ScalarW0ScalarW
10 eqid BaseW=BaseW
11 eqid BaseScalarW=BaseScalarW
12 eqid 0ScalarW=0ScalarW
13 eqid 1ScalarW=1ScalarW
14 1 2 10 6 11 12 13 lmodfopne WLMod1ScalarW0ScalarW+˙·˙
15 3 9 14 syl2anc WCMod+˙·˙