Metamath Proof Explorer


Theorem clmsscn

Description: The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F = Scalar W
clmsub.k K = Base F
Assertion clmsscn W CMod K

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 clmsub.k K = Base F
3 1 2 clmsubrg W CMod K SubRing fld
4 cnfldbas = Base fld
5 4 subrgss K SubRing fld K
6 3 5 syl W CMod K