Metamath Proof Explorer


Theorem clmsubcl

Description: Closure of ring subtraction for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f F = Scalar W
clmsub.k K = Base F
Assertion clmsubcl W CMod X K Y K X Y K

Proof

Step Hyp Ref Expression
1 clm0.f F = Scalar W
2 clmsub.k K = Base F
3 1 2 clmsubrg W CMod K SubRing fld
4 subrgsubg K SubRing fld K SubGrp fld
5 3 4 syl W CMod K SubGrp fld
6 cnfldsub = - fld
7 6 subgsubcl K SubGrp fld X K Y K X Y K
8 5 7 syl3an1 W CMod X K Y K X Y K