Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex modules
clmsubrg
Metamath Proof Explorer
Description: The base set of the ring of scalars of a subcomplex module is the base
set of a subring of the field of complex numbers. (Contributed by Mario
Carneiro , 16-Oct-2015)
Ref
Expression
Hypotheses
isclm.f
⊢ F = Scalar ⁡ W
isclm.k
⊢ K = Base F
Assertion
clmsubrg
⊢ W ∈ CMod → K ∈ SubRing ⁡ ℂ fld
Proof
Step
Hyp
Ref
Expression
1
isclm.f
⊢ F = Scalar ⁡ W
2
isclm.k
⊢ K = Base F
3
1 2
isclm
⊢ W ∈ CMod ↔ W ∈ LMod ∧ F = ℂ fld ↾ 𝑠 K ∧ K ∈ SubRing ⁡ ℂ fld
4
3
simp3bi
⊢ W ∈ CMod → K ∈ SubRing ⁡ ℂ fld