Metamath Proof Explorer


Theorem clmsubrg

Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses isclm.f F = Scalar W
isclm.k K = Base F
Assertion clmsubrg W CMod K SubRing fld

Proof

Step Hyp Ref Expression
1 isclm.f F = Scalar W
2 isclm.k K = Base F
3 1 2 isclm W CMod W LMod F = fld 𝑠 K K SubRing fld
4 3 simp3bi W CMod K SubRing fld