Metamath Proof Explorer


Theorem clmvneg1

Description: Minus 1 times a vector is the negative of the vector. Equation 2 of Kreyszig p. 51. ( lmodvneg1 analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvneg1.v V = Base W
clmvneg1.n N = inv g W
clmvneg1.f F = Scalar W
clmvneg1.s · ˙ = W
Assertion clmvneg1 W CMod X V -1 · ˙ X = N X

Proof

Step Hyp Ref Expression
1 clmvneg1.v V = Base W
2 clmvneg1.n N = inv g W
3 clmvneg1.f F = Scalar W
4 clmvneg1.s · ˙ = W
5 eqid Base F = Base F
6 3 5 clmzss W CMod Base F
7 1zzd W CMod 1
8 6 7 sseldd W CMod 1 Base F
9 3 5 clmneg W CMod 1 Base F 1 = inv g F 1
10 8 9 mpdan W CMod 1 = inv g F 1
11 3 clm1 W CMod 1 = 1 F
12 11 fveq2d W CMod inv g F 1 = inv g F 1 F
13 10 12 eqtrd W CMod 1 = inv g F 1 F
14 13 adantr W CMod X V 1 = inv g F 1 F
15 14 oveq1d W CMod X V -1 · ˙ X = inv g F 1 F · ˙ X
16 clmlmod W CMod W LMod
17 eqid 1 F = 1 F
18 eqid inv g F = inv g F
19 1 2 3 4 17 18 lmodvneg1 W LMod X V inv g F 1 F · ˙ X = N X
20 16 19 sylan W CMod X V inv g F 1 F · ˙ X = N X
21 15 20 eqtrd W CMod X V -1 · ˙ X = N X