Metamath Proof Explorer


Theorem clmvneg1

Description: Minus 1 times a vector is the negative of the vector. Equation 2 of Kreyszig p. 51. ( lmodvneg1 analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvneg1.v V=BaseW
clmvneg1.n N=invgW
clmvneg1.f F=ScalarW
clmvneg1.s ·˙=W
Assertion clmvneg1 WCModXV-1·˙X=NX

Proof

Step Hyp Ref Expression
1 clmvneg1.v V=BaseW
2 clmvneg1.n N=invgW
3 clmvneg1.f F=ScalarW
4 clmvneg1.s ·˙=W
5 eqid BaseF=BaseF
6 3 5 clmzss WCModBaseF
7 1zzd WCMod1
8 6 7 sseldd WCMod1BaseF
9 3 5 clmneg WCMod1BaseF1=invgF1
10 8 9 mpdan WCMod1=invgF1
11 3 clm1 WCMod1=1F
12 11 fveq2d WCModinvgF1=invgF1F
13 10 12 eqtrd WCMod1=invgF1F
14 13 adantr WCModXV1=invgF1F
15 14 oveq1d WCModXV-1·˙X=invgF1F·˙X
16 clmlmod WCModWLMod
17 eqid 1F=1F
18 eqid invgF=invgF
19 1 2 3 4 17 18 lmodvneg1 WLModXVinvgF1F·˙X=NX
20 16 19 sylan WCModXVinvgF1F·˙X=NX
21 15 20 eqtrd WCModXV-1·˙X=NX