Metamath Proof Explorer


Theorem clmvs1

Description: Scalar product with ring unit. ( lmodvs1 analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvs1.v V = Base W
clmvs1.s · ˙ = W
Assertion clmvs1 W CMod X V 1 · ˙ X = X

Proof

Step Hyp Ref Expression
1 clmvs1.v V = Base W
2 clmvs1.s · ˙ = W
3 eqid Scalar W = Scalar W
4 3 clm1 W CMod 1 = 1 Scalar W
5 4 adantr W CMod X V 1 = 1 Scalar W
6 5 oveq1d W CMod X V 1 · ˙ X = 1 Scalar W · ˙ X
7 clmlmod W CMod W LMod
8 eqid 1 Scalar W = 1 Scalar W
9 1 3 2 8 lmodvs1 W LMod X V 1 Scalar W · ˙ X = X
10 7 9 sylan W CMod X V 1 Scalar W · ˙ X = X
11 6 10 eqtrd W CMod X V 1 · ˙ X = X