Metamath Proof Explorer


Theorem clmvsass

Description: Associative law for scalar product. Analogue of lmodvsass . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvscl.v V = Base W
clmvscl.f F = Scalar W
clmvscl.s · ˙ = W
clmvscl.k K = Base F
Assertion clmvsass W CMod Q K R K X V Q R · ˙ X = Q · ˙ R · ˙ X

Proof

Step Hyp Ref Expression
1 clmvscl.v V = Base W
2 clmvscl.f F = Scalar W
3 clmvscl.s · ˙ = W
4 clmvscl.k K = Base F
5 2 clmmul W CMod × = F
6 5 adantr W CMod Q K R K X V × = F
7 6 oveqd W CMod Q K R K X V Q R = Q F R
8 7 oveq1d W CMod Q K R K X V Q R · ˙ X = Q F R · ˙ X
9 clmlmod W CMod W LMod
10 eqid F = F
11 1 2 3 4 10 lmodvsass W LMod Q K R K X V Q F R · ˙ X = Q · ˙ R · ˙ X
12 9 11 sylan W CMod Q K R K X V Q F R · ˙ X = Q · ˙ R · ˙ X
13 8 12 eqtrd W CMod Q K R K X V Q R · ˙ X = Q · ˙ R · ˙ X