Metamath Proof Explorer


Theorem clmvscl

Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl . (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)

Ref Expression
Hypotheses clmvscl.v V = Base W
clmvscl.f F = Scalar W
clmvscl.s · ˙ = W
clmvscl.k K = Base F
Assertion clmvscl W CMod Q K X V Q · ˙ X V

Proof

Step Hyp Ref Expression
1 clmvscl.v V = Base W
2 clmvscl.f F = Scalar W
3 clmvscl.s · ˙ = W
4 clmvscl.k K = Base F
5 clmlmod W CMod W LMod
6 1 2 3 4 lmodvscl W LMod Q K X V Q · ˙ X V
7 5 6 syl3an1 W CMod Q K X V Q · ˙ X V