Metamath Proof Explorer


Theorem clmvsdi

Description: Distributive law for scalar product (left-distributivity). ( lmodvsdi analog.) (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)

Ref Expression
Hypotheses clmvscl.v V = Base W
clmvscl.f F = Scalar W
clmvscl.s · ˙ = W
clmvscl.k K = Base F
clmvsdir.a + ˙ = + W
Assertion clmvsdi W CMod A K X V Y V A · ˙ X + ˙ Y = A · ˙ X + ˙ A · ˙ Y

Proof

Step Hyp Ref Expression
1 clmvscl.v V = Base W
2 clmvscl.f F = Scalar W
3 clmvscl.s · ˙ = W
4 clmvscl.k K = Base F
5 clmvsdir.a + ˙ = + W
6 clmlmod W CMod W LMod
7 1 5 2 3 4 lmodvsdi W LMod A K X V Y V A · ˙ X + ˙ Y = A · ˙ X + ˙ A · ˙ Y
8 6 7 sylan W CMod A K X V Y V A · ˙ X + ˙ Y = A · ˙ X + ˙ A · ˙ Y