Metamath Proof Explorer


Theorem clmvsdir

Description: Distributive law for scalar product (right-distributivity). ( lmodvsdir analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvscl.v V = Base W
clmvscl.f F = Scalar W
clmvscl.s · ˙ = W
clmvscl.k K = Base F
clmvsdir.a + ˙ = + W
Assertion clmvsdir W CMod Q K R K X V Q + R · ˙ X = Q · ˙ X + ˙ R · ˙ X

Proof

Step Hyp Ref Expression
1 clmvscl.v V = Base W
2 clmvscl.f F = Scalar W
3 clmvscl.s · ˙ = W
4 clmvscl.k K = Base F
5 clmvsdir.a + ˙ = + W
6 2 clmadd W CMod + = + F
7 6 oveqd W CMod Q + R = Q + F R
8 7 oveq1d W CMod Q + R · ˙ X = Q + F R · ˙ X
9 8 adantr W CMod Q K R K X V Q + R · ˙ X = Q + F R · ˙ X
10 clmlmod W CMod W LMod
11 eqid + F = + F
12 1 5 2 3 4 11 lmodvsdir W LMod Q K R K X V Q + F R · ˙ X = Q · ˙ X + ˙ R · ˙ X
13 10 12 sylan W CMod Q K R K X V Q + F R · ˙ X = Q · ˙ X + ˙ R · ˙ X
14 9 13 eqtrd W CMod Q K R K X V Q + R · ˙ X = Q · ˙ X + ˙ R · ˙ X