Metamath Proof Explorer


Theorem clmvsneg

Description: Multiplication of a vector by a negated scalar. ( lmodvsneg analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvsneg.b B = Base W
clmvsneg.f F = Scalar W
clmvsneg.s · ˙ = W
clmvsneg.n N = inv g W
clmvsneg.k K = Base F
clmvsneg.w φ W CMod
clmvsneg.x φ X B
clmvsneg.r φ R K
Assertion clmvsneg φ N R · ˙ X = R · ˙ X

Proof

Step Hyp Ref Expression
1 clmvsneg.b B = Base W
2 clmvsneg.f F = Scalar W
3 clmvsneg.s · ˙ = W
4 clmvsneg.n N = inv g W
5 clmvsneg.k K = Base F
6 clmvsneg.w φ W CMod
7 clmvsneg.x φ X B
8 clmvsneg.r φ R K
9 eqid inv g F = inv g F
10 clmlmod W CMod W LMod
11 6 10 syl φ W LMod
12 1 2 3 4 5 9 11 7 8 lmodvsneg φ N R · ˙ X = inv g F R · ˙ X
13 2 5 clmneg W CMod R K R = inv g F R
14 6 8 13 syl2anc φ R = inv g F R
15 14 oveq1d φ R · ˙ X = inv g F R · ˙ X
16 12 15 eqtr4d φ N R · ˙ X = R · ˙ X