Metamath Proof Explorer


Theorem clmvsrinv

Description: A vector minus itself. (Contributed by NM, 4-Dec-2006) (Revised by AV, 28-Sep-2021)

Ref Expression
Hypotheses clmpm1dir.v V = Base W
clmpm1dir.s · ˙ = W
clmpm1dir.a + ˙ = + W
clmvsrinv.0 0 ˙ = 0 W
Assertion clmvsrinv W CMod A V A + ˙ -1 · ˙ A = 0 ˙

Proof

Step Hyp Ref Expression
1 clmpm1dir.v V = Base W
2 clmpm1dir.s · ˙ = W
3 clmpm1dir.a + ˙ = + W
4 clmvsrinv.0 0 ˙ = 0 W
5 eqid inv g W = inv g W
6 eqid Scalar W = Scalar W
7 1 5 6 2 clmvneg1 W CMod A V -1 · ˙ A = inv g W A
8 7 oveq2d W CMod A V A + ˙ -1 · ˙ A = A + ˙ inv g W A
9 clmgrp W CMod W Grp
10 1 3 4 5 grprinv W Grp A V A + ˙ inv g W A = 0 ˙
11 9 10 sylan W CMod A V A + ˙ inv g W A = 0 ˙
12 8 11 eqtrd W CMod A V A + ˙ -1 · ˙ A = 0 ˙