Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex modules
clmvsrinv
Next ⟩
clmvslinv
Metamath Proof Explorer
Ascii
Unicode
Theorem
clmvsrinv
Description:
A vector minus itself.
(Contributed by
NM
, 4-Dec-2006)
(Revised by
AV
, 28-Sep-2021)
Ref
Expression
Hypotheses
clmpm1dir.v
⊢
V
=
Base
W
clmpm1dir.s
⊢
·
˙
=
⋅
W
clmpm1dir.a
⊢
+
˙
=
+
W
clmvsrinv.0
⊢
0
˙
=
0
W
Assertion
clmvsrinv
⊢
W
∈
CMod
∧
A
∈
V
→
A
+
˙
-1
·
˙
A
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
clmpm1dir.v
⊢
V
=
Base
W
2
clmpm1dir.s
⊢
·
˙
=
⋅
W
3
clmpm1dir.a
⊢
+
˙
=
+
W
4
clmvsrinv.0
⊢
0
˙
=
0
W
5
eqid
⊢
inv
g
⁡
W
=
inv
g
⁡
W
6
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
7
1
5
6
2
clmvneg1
⊢
W
∈
CMod
∧
A
∈
V
→
-1
·
˙
A
=
inv
g
⁡
W
⁡
A
8
7
oveq2d
⊢
W
∈
CMod
∧
A
∈
V
→
A
+
˙
-1
·
˙
A
=
A
+
˙
inv
g
⁡
W
⁡
A
9
clmgrp
⊢
W
∈
CMod
→
W
∈
Grp
10
1
3
4
5
grprinv
⊢
W
∈
Grp
∧
A
∈
V
→
A
+
˙
inv
g
⁡
W
⁡
A
=
0
˙
11
9
10
sylan
⊢
W
∈
CMod
∧
A
∈
V
→
A
+
˙
inv
g
⁡
W
⁡
A
=
0
˙
12
8
11
eqtrd
⊢
W
∈
CMod
∧
A
∈
V
→
A
+
˙
-1
·
˙
A
=
0
˙