Metamath Proof Explorer


Theorem clnbgrcl

Description: If a class X has at least one element in its closed neighborhood, this class must be a vertex. (Contributed by AV, 7-May-2025)

Ref Expression
Hypothesis clnbgrcl.v V = Vtx G
Assertion clnbgrcl Could not format assertion : No typesetting found for |- ( N e. ( G ClNeighbVtx X ) -> X e. V ) with typecode |-

Proof

Step Hyp Ref Expression
1 clnbgrcl.v V = Vtx G
2 df-clnbgr Could not format ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) : No typesetting found for |- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) with typecode |-
3 2 mpoxeldm Could not format ( N e. ( G ClNeighbVtx X ) -> ( G e. _V /\ X e. [_ G / g ]_ ( Vtx ` g ) ) ) : No typesetting found for |- ( N e. ( G ClNeighbVtx X ) -> ( G e. _V /\ X e. [_ G / g ]_ ( Vtx ` g ) ) ) with typecode |-
4 csbfv G / g Vtx g = Vtx G
5 4 1 eqtr4i G / g Vtx g = V
6 5 eleq2i X G / g Vtx g X V
7 6 biimpi X G / g Vtx g X V
8 3 7 simpl2im Could not format ( N e. ( G ClNeighbVtx X ) -> X e. V ) : No typesetting found for |- ( N e. ( G ClNeighbVtx X ) -> X e. V ) with typecode |-