Metamath Proof Explorer


Theorem clnbgrnvtx0

Description: If a class X is not a vertex of a graph G , then it has an empty closed neighborhood in G . (Contributed by AV, 8-May-2025)

Ref Expression
Hypothesis clnbgrel.v V = Vtx G
Assertion clnbgrnvtx0 Could not format assertion : No typesetting found for |- ( X e/ V -> ( G ClNeighbVtx X ) = (/) ) with typecode |-

Proof

Step Hyp Ref Expression
1 clnbgrel.v V = Vtx G
2 csbfv G / g Vtx g = Vtx G
3 1 2 eqtr4i V = G / g Vtx g
4 neleq2 V = G / g Vtx g X V X G / g Vtx g
5 3 4 ax-mp X V X G / g Vtx g
6 5 biimpi X V X G / g Vtx g
7 6 olcd X V G V X G / g Vtx g
8 df-clnbgr Could not format ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) : No typesetting found for |- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) with typecode |-
9 8 mpoxneldm Could not format ( ( G e/ _V \/ X e/ [_ G / g ]_ ( Vtx ` g ) ) -> ( G ClNeighbVtx X ) = (/) ) : No typesetting found for |- ( ( G e/ _V \/ X e/ [_ G / g ]_ ( Vtx ` g ) ) -> ( G ClNeighbVtx X ) = (/) ) with typecode |-
10 7 9 syl Could not format ( X e/ V -> ( G ClNeighbVtx X ) = (/) ) : No typesetting found for |- ( X e/ V -> ( G ClNeighbVtx X ) = (/) ) with typecode |-