Metamath Proof Explorer


Theorem clnbgrsym

Description: In a graph, the closed neighborhood relation is symmetric: a vertex N in a graph G is a neighbor of a second vertex K iff the second vertex K is a neighbor of the first vertex N . (Contributed by AV, 10-May-2025)

Ref Expression
Assertion clnbgrsym Could not format assertion : No typesetting found for |- ( N e. ( G ClNeighbVtx K ) <-> K e. ( G ClNeighbVtx N ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ancom N Vtx G K Vtx G K Vtx G N Vtx G
2 eqcom N = K K = N
3 prcom K N = N K
4 3 sseq1i K N e N K e
5 4 rexbii e Edg G K N e e Edg G N K e
6 2 5 orbi12i N = K e Edg G K N e K = N e Edg G N K e
7 1 6 anbi12i N Vtx G K Vtx G N = K e Edg G K N e K Vtx G N Vtx G K = N e Edg G N K e
8 eqid Vtx G = Vtx G
9 eqid Edg G = Edg G
10 8 9 clnbgrel Could not format ( N e. ( G ClNeighbVtx K ) <-> ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) ) : No typesetting found for |- ( N e. ( G ClNeighbVtx K ) <-> ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) ) with typecode |-
11 8 9 clnbgrel Could not format ( K e. ( G ClNeighbVtx N ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ ( K = N \/ E. e e. ( Edg ` G ) { N , K } C_ e ) ) ) : No typesetting found for |- ( K e. ( G ClNeighbVtx N ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ ( K = N \/ E. e e. ( Edg ` G ) { N , K } C_ e ) ) ) with typecode |-
12 7 10 11 3bitr4i Could not format ( N e. ( G ClNeighbVtx K ) <-> K e. ( G ClNeighbVtx N ) ) : No typesetting found for |- ( N e. ( G ClNeighbVtx K ) <-> K e. ( G ClNeighbVtx N ) ) with typecode |-