Metamath Proof Explorer


Theorem clnbgrval

Description: The closed neighborhood of a vertex V in a graph G . (Contributed by AV, 7-May-2025)

Ref Expression
Hypotheses clnbgrval.v V = Vtx G
clnbgrval.e E = Edg G
Assertion clnbgrval Could not format assertion : No typesetting found for |- ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E { N , n } C_ e } ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 clnbgrval.v V = Vtx G
2 clnbgrval.e E = Edg G
3 df-clnbgr Could not format ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) : No typesetting found for |- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) with typecode |-
4 1 1vgrex N V G V
5 fveq2 G = g Vtx G = Vtx g
6 5 eqcoms g = G Vtx G = Vtx g
7 1 6 eqtrid g = G V = Vtx g
8 7 eleq2d g = G N V N Vtx g
9 8 biimpac N V g = G N Vtx g
10 vsnex v V
11 10 a1i N V g = G v = N v V
12 fvex Vtx g V
13 rabexg Vtx g V n Vtx g | e Edg g v n e V
14 12 13 mp1i N V g = G v = N n Vtx g | e Edg g v n e V
15 11 14 unexd N V g = G v = N v n Vtx g | e Edg g v n e V
16 sneq v = N v = N
17 16 adantl g = G v = N v = N
18 fveq2 g = G Vtx g = Vtx G
19 18 1 eqtr4di g = G Vtx g = V
20 19 adantr g = G v = N Vtx g = V
21 fveq2 g = G Edg g = Edg G
22 21 2 eqtr4di g = G Edg g = E
23 22 adantr g = G v = N Edg g = E
24 preq1 v = N v n = N n
25 24 sseq1d v = N v n e N n e
26 25 adantl g = G v = N v n e N n e
27 23 26 rexeqbidv g = G v = N e Edg g v n e e E N n e
28 20 27 rabeqbidv g = G v = N n Vtx g | e Edg g v n e = n V | e E N n e
29 17 28 uneq12d g = G v = N v n Vtx g | e Edg g v n e = N n V | e E N n e
30 29 adantl N V g = G v = N v n Vtx g | e Edg g v n e = N n V | e E N n e
31 4 9 15 30 ovmpodv2 Could not format ( N e. V -> ( ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E { N , n } C_ e } ) ) ) : No typesetting found for |- ( N e. V -> ( ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) ) -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E { N , n } C_ e } ) ) ) with typecode |-
32 3 31 mpi Could not format ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E { N , n } C_ e } ) ) : No typesetting found for |- ( N e. V -> ( G ClNeighbVtx N ) = ( { N } u. { n e. V | E. e e. E { N , n } C_ e } ) ) with typecode |-